3 min read
Sols 4732-4735: I’ll Zap You, My Pretty, and Your Pebble Too
Earth planning date: Friday, Nov. 22, 2024
For more than a year, NASA’s Curiosity rover has been climbing through layers of sulfate-rich rock in Gale Crater, where alternating thick light- and dark-toned bands are visible by satellite. After a successful 24.55-meter drive (about 81 feet), Curiosity traversed across a light-toned band into a dark-toned one, entering a workspace that contains the characteristic features of these dark-toned bands: platy, dark-toned material interbedded with lighter-toned bedrock. The origin of this dark-toned, platy material remains a mystery. To help solve it, the Geology and Mineralogy Theme Group focused the weekend’s science plan on continuing our documentation of the sedimentary textures, structures, and chemistry of this bedrock, aiming to uncover clues about the processes that formed the dark-toned, platy material. My role as Keeper of the Geology Plan meant keeping track of all the geology-related requests, which made for a busy day!
To investigate further, we plan to brush away surface dust from a section of light-toned bedrock and capture detailed images using the Mars Hand Lens Imager (MAHLI). This close-up view will be paired with chemical and mineralogical analysis using the Alpha Particle X-Ray Spectrometer (APXS). Meanwhile, Mastcam will focus on two nearby outcrops nicknamed “Hanging Valley Ridge” 1 and 2, where the dark-toned platy material is visibly layered within the light-toned bedrock. ChemCam will add to the data by zapping both the brushed light-toned area and the dark-toned material to work out their compositions and compare the two.
In addition to studying the sulfate layers, we’re continuing our long-term investigation of Gediz Vallis Ridge, believed to be a remnant of an ancient debris channel that we’ve been investigating for some time. To build on our previous observations, we’ve planned a Mastcam mosaic and a long-distance Remote Micro-Imager (RMI) observation to further document its morphology and sedimentary structures. Interestingly, we’ve also identified a dark-toned pebble in our workspace that could have been transported from Gediz Vallis Ridge. To test this idea, we’ll use ChemCam to zap the pebble to work out its composition and compare it to the dark-toned material in the outcrop.
While Curiosity focuses on the Martian surface, we’re also monitoring the planet’s atmosphere. The Environmental Theme Group is using the rover’s downtime to conduct a series of dust- and cloud-monitoring activities. One highlight of the weekend plan is an approximately 30-minute ChemCam passive sky observation, which will help us study atmospheric conditions in Gale Crater.
As Americans prepare for Thanksgiving here on Earth, the Curiosity team is gearing up for a special holiday “mega plan.” This seven-sol schedule will keep the rover hard at work, ensuring that science and exploration continue while the team enjoys their celebrations. Stay tuned to see what this plan has in store next week!
Written by Amelie Roberts, Ph.D. candidate at Imperial College London
Comments are closed.